Crystal and Molecular Structure of Acetatocarbonyl(N-p-tolylformimidoyl)bis(triphenylphosphine)ruthenium(II)

By George R. Clark, Joyce M. Waters,* and Kenneth R. Whittle, Chemistry Department, University of Auckland, Auckland, New Zealand

Abstract

The crystal and molecular structure of the title compound has been determined by the heavy-atom method from three-dimensional X-ray data collected by counter methods. Crystals are monoclinic. space group $P 2_{1} / c$, with $Z=4$ in a unit cell of dimensions $a=9.947(4), b=14.680(4), c=28.014(5) A$, and $\beta=92.08(2)^{\circ}$. Blockdiagonal least-squares refinement gave R of 0.057 for 2519 observed reflections. The geometry about the metal is that of a distorted octahedron with carbonyl, N-p-tolylformimidoyl, and bidentate acetate groups forming a plane and the two triphenylphosphine groups occupying the remaining trans-positions.

The reaction of co-ordinated isocyanide in the complex $\left[\mathrm{Ru}\left(\mathrm{O}_{2}\right)(\mathrm{CO})(\mathrm{CNR})\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{R}=p$-tolyl) with ethanol to produce the formimidoyl ligand has recently been reported. ${ }^{1}$ The ethanol is believed to react with the molecular oxygen, and a possible mechanism involves the formation of a ruthenium hydride complex as intermediate. Such a hydrogen transfer from a transition metal to the isocyanide ligand has not previously been noted although hydrogen transfers to nitrosyl, ${ }^{2}$ acetylene, ${ }^{3}$ and ketimido-ligands ${ }^{4}$ have been observed, but rarely. Similar compounds are also formed with n-propanol and benzyl alcohol. ${ }^{1}$ A crystal-structure analysis of the complex $\left[\mathrm{Ru}(\mathrm{OAc})\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NCH}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was considered to be particularly appropriate since the ligand N - p-tolylformimidoyl has not previously been characterised by the X-ray method. It was hoped to obtain information on the nature of the metal-formimidoyl bond as well as the trans-effect of this ligand.

EXPERIMENTAL

Crystals were pale yellow needles. Unit-cell constants were determined from a least-squares refinement ${ }^{5}$ of the setting angles of twelve reflections centred on a Hilger and Watts automatic four-circle diffractometer.

Crystal Data.- $\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{Ru}, M=830.9$, Monoclinic, $a=9.947(4), b=14.680(4), c=28.014(5) \AA, \beta=92.08(2)^{\circ}$, $U=4088 \AA^{3}, \quad D_{\mathrm{m}}=1.34, \quad Z=4, \quad D_{\mathrm{c}}=1.35$. Space group $P 2_{1} / c$. Mo- K_{α} radiation, $\lambda=0.7107 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $5.0 \mathrm{~cm}^{-1}$. The $2 \theta-\omega$ scan technique was used to record 2519 independent reflections for which $I>2.5 \sigma(I)$. Data were processed according to the procedure of Ibers ${ }^{6}$ with $p=0.04$. No absorption corrections were applied since μ was small and the range of absorption factors was only $1.05-$ 1.14.7

A 'sharpened' Patterson revealed the site of the ruthenium atom and from the resulting heavy-atom map the two phosphorus atoms were located ($R 0.31$). A second electrondensity synthesis indicated positions for the remaining fiftyone non-hydrogen atoms and inclusion of these in a structure factor calculation reduced R to 0.16 . The atomic scattering factors used for the ruthenium atom were taken from ref. 8, and for all other atoms from ref. 9. Four cycles of block-
${ }^{1}$ D. F. Christian, G. R. Clark, W. R. Roper, J. M. Waters, and K. R. Whittle, J.C.S. Chem. Comm., 1972, 458.
${ }^{2}$ K. R. Grundy, C. A. Reed, and W. R. Roper, Chem. Comm., 1970, 1501.
${ }^{3}$ B. E. Mann, B. L. Shaw, and N. I. Tucker, Chem. Comm., 1970, 1333.
${ }^{4}$ B. Cetinkaya, M. F. Lappert, and J. McMeeking, Chem. Comm., 1971, 215.
${ }_{5}$ W. R. Busing and H. A. Levy, Acta Cryst., 1967, 22, 457.
diagonal least-squares refinement assuming isotropic thermal motion lowered the factors R to 0.085 and R^{\prime} to 0.075 $\left\{R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right]^{\frac{1}{2}}\right.$. The weight, w, was

Figure 1 The atom numbering system

Figure 2 The co-ordination about ruthenium
given by $4 F_{0}^{2} / \sigma^{2}\left(F_{0}{ }^{2}\right)$; the function minimised was $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$. Anisotropic thermal motion was then assumed for all non-hydrogen atoms other than those of the phenyl, p tolyl, and acetate-methyl groups and after a further three refinement cycles R and R^{\prime} were 0.079 and 0.069 respectively. Calculated positions for the hydrogen atoms associated with the acetate, phenyl, and p-tolyl groups were included in the structure-factor calculations assuming isotropic thermal

[^0]motion with $B=5.0 \AA^{2}(R 0.075)$. Anisotropic thermal motion was then assumed for all remaining non-hydrogen atoms and after three refinement cycles R and R^{\prime} were 0.063 and 0.056 respectively. The effects of anomalous dispersion

Table 1
Atomic co-ordinates with standard deviations in
parentheses

Atom	x / a	y / b	z / c
Ru	$0.17603(9)$	0.234 97(6)	$0.38182(3)$
$\mathrm{P}(1)$	0.0571 (3)	0.1166(2)	0.3410 (1)
$\mathrm{P}(2)$	$0.3011(3)$	0.3497(2)	0.4243(1)
$\mathrm{O}(1)$	-0.0640(9)	$0.3530(6)$	$0.3826(3)$
$\mathrm{O}(2)$	$0.3374(8)$	$0.1364(6)$	0.3922(3)
\bigcirc (3)	0.1981 (9)	$0.1514(6)$	0.4502 (3)
$\mathrm{N}(11)$	$0.1769(10)$	$0.3214(7)$	0.2857 (3)
$\mathrm{C}(1)$	0.0289(12)	0.3073(8)	$0.3821(4)$
C(2)	0.3046 (15)	0.1130(10)	0.4349 (5)
C(3)	$0.3821(16)$	$0.0452(10)$	$0.4620(5)$
C(11)	$0.2328(11)$	$0.2806(8)$	0.3199(4)
$\mathrm{C}(12)$	0.2487(13)	$0.3335(9)$	$0.2424(4)$
$\mathrm{C}(13)$	$0.1855(15)$	0.3094(12)	0.1988(5)
C(14)	0.2519(18)	$0.3157(14)$	$0.1574(6)$
$\mathrm{C}(15)$	$0.3803(16)$	$0.3501(11)$	$0.1561(5)$
C(16)	$0.4403(16)$	$0.3754(12)$	0.1987(6)
$\mathrm{C}(17)$	$0.3753(14)$	$0.3678(10)$	0.2420 (5)
C(18)	0.4481 (23)	$0.3606(16)$	$0.1107(7)$
C(111)	0.0416 (11)	$0.0158(9)$	0.3781 (4)
C(112)	-0.0372(15)	0.0219(10)	$0.4188(5)$
$\mathrm{C}(113)$	-0.0469(17)	-0.0519(12)	$0.4488(5)$
C (114)	$0.0172(19)$	-0.1301(12)	0.4395(6)
C(115)	0.0933(19)	-0.1392(12)	$0.4004(7)$
$\mathrm{C}(116)$	$0.1043(16)$	-0.0861(11)	$0.3685(6)$
C (121)	-0.1144(11)	0.1431 (8)	$0.3195(4)$
C(122)	-0.2255(13)	$0.0884(9)$	0.3275 (5)
$\mathrm{C}(123)$	-0.3512(12)	$0.1112(11)$	0.3099(5)
$\mathrm{C}(124)$	-0.3686(12)	$0.1902(10)$	0.2840 (5)
$\mathrm{C}(125)$	-0.2632(11)	$0.2453(10)$	0.2749(4)
$\mathrm{C}(126)$	-0.1317(12)	$0.2224(9)$	0.2922(4)
C(131)	0.1316 (11)	0.0716(8)	0.2868 (4)
C(132)	$0.0502(11)$	$0.0253(9)$	$0.2535(4)$
C(133)	$0.1072(13)$	-0.0117(11)	$0.2131(5)$
C(134)	$0.2392(13)$	-0.0017(10)	0.2070 (5)
$\mathrm{C}(135)$	$0.3211(12)$	$0.0408(10)$	0.2319(5)
$\mathrm{C}(136)$	0.2675 (11)	0.0757(8)	0.2804(4)
C(211)	$0.3412(11)$	0.4530 (8)	0.3923 (4)
C(212)	0.2447 (13)	0.4926 (9)	0.3618 (5)
C(213)	$0.2726(16)$	$0.5745(10)$	0.3396 (6)
C(214)	$0.3958(17)$	$0.6175(11)$	$0.3457(5)$
C(215)	0.4883(15)	$0.5768(11)$	0.3758 (5)
$\mathrm{C}(216)$	0.4659(13)	0.4957(10)	0.3987(5)
C(221)	$0.4661(11)$	$0.3078(8)$	$0.4465(4)$
C(222)	$0.5532(12)$	0.2767 (9)	$0.4136(4)$
C(223)	0.6756(12)	$0.2410(11)$	$0.4283(5)$
C(224)	$0.7120(13)$	$0.2387(13)$	$0.4763(5)$
C(225)	$0.6256(13)$	0.2691 (13)	$0.5082(5)$
C(226)	0.5033(14)	$0.3047(10)$	$0.4944(5)$
C(231)	$0.2211(11)$	$0.3922(8)$	$0.4773(4)$
C(232)	$0.2457(13)$	$0.4797(9)$	0.4945 (4)
C(233)	$0.1855(15)$	0.5099(9)	0.5354(5)
C(234)	$0.1073(15)$	$0.4554(10)$	$0.5613(5)$
C(235)	0.0858(18)	0.3710(12)	0.5445(6)
C(236)	$0.1394(15)$	0.3386(10)	0.5028(5)

were included in the calculation of F_{c}, the values of Δf^{\prime} and $\Delta f^{\prime \prime}$ for ruthenium and phosphorus being those given in ref. 10. Further least-squares refinement gave $R 0.057$ and R^{\prime} 0.056 . A final difference map showed a region of positive electron density suitable for a hydrogen-atom site near carbon atom $\mathrm{C}(11)\left[\mathrm{C}-\mathrm{H} 0.91 \AA, \mathrm{Ru}-\mathrm{C}(11)-\mathrm{H} 96^{\circ}\right]$, but this could not be identified with certainty as the formimidoyl hydrogen,

[^1]since peaks of comparable height appeared elsewhere on the map.

Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 21433 (28 pp., 1 microfiche),* together with thermal parameters, details of planes, and root-mean-square amplitudes of vibration. In Figure 1 the numbering system for the molecule is given and in Figure 2 the co-ordination about the ruthenium is shown. Final atomic positional parameters are listed in Table I with their standard deviations, calculated positions for hydrogen atoms in Table 2, and bond lengths and angles, with their standard deviations, in Tables 3 and 4.

Table 2

Calculated hydrogen positions (numbered according to the carbon atoms to which they are attached)

Atom	x / a	y / b	z / c
$\mathrm{H}(11)$	0.331	0.270	0.314
$\mathrm{H}(13)$	0.089	0.284	0.198
$\mathrm{H}(14)$	0.213	0.293	0.125
$\mathrm{H}(16)$	0.535	0.402	0.198
$\mathrm{H}(17)$	0.420	0.390	0.273
$\mathrm{H}(31)$	0.470	0.070	0.473
$\mathrm{H}(32)$	0.397	-0.013	0.441
$\mathrm{H}(33)$	0.319	0.016	0.488
H(181)	0.506	0.418	0.109
$\mathrm{H}(182)$	0.493	0.300	0.100
$\mathrm{H}(183)$	0.377	0.377	0.084
H(112)	-0.086	0.080	0.426
$\mathrm{H}(113)$	-0.107	-0.051	0.478
H(114)	0.005	-0.180	0.463
H(115)	0.141	-0.197	0.395
$\mathrm{H}(116)$	0.159	-0.071	0.338
H (122)	-0.211	0.029	0.347
$\mathrm{H}(123)$	-0.430	0.074	0.318
H(124)	-0.461	0.206	0.273
$\mathrm{H}(125)$	-0.278	0.301	0.254
H(126)	-0.051	0.263	0.285
$\mathrm{H}(132)$	-0.048	0.019	0.259
H(133)	0.048	-0.047	0.189
$\mathrm{H}(134)$	0.279	-0.027	0.177
H(135)	0.422	0.047	0.234
H (136)	0.325	0.108	0.305
$\mathrm{H}(212)$	0.153	0.462	0.356
$\mathrm{H}(213)$	0.201	0.606	0.318
$\mathrm{H}(214)$	0.420	0.675	0.328
$\mathrm{H}(215)$	0.578	0.608	0.382
$\mathrm{H}(216)$	0.541	0.468	0.420
$\mathrm{H}(222)$	0.526	0.280	0.378
$\mathrm{H}(223)$	0.739	0.217	0.404
$\mathrm{H}(224)$	0.802	0.213	0.486
$\mathrm{H}(225)$	0.652	0.268	0.544
$\mathrm{H}(226)$	0.442	0.330	0.519
$\mathrm{H}(232)$	0.308	0.521	0.476
$\mathrm{H}(233)$	0.201	0.575	0.546
$\mathrm{H}(234)$	0.067	0.481	0.590
$\mathrm{H}(235)$	0.023	0.330	0.564
$\mathrm{H}(236)$	0.123	0.274	0.492

RESULTS AND DISCUSSION

The crystal structure is built up of monomeric units. The five ligands about the ruthenium adopt a distorted octahedral arrangement with the two triphenylphosphine groups occupying the trans-positions (see Figure 2); the distortion is caused by the acetate group, which is bonded in an asymmetric bidentate manner.

This is the first structural analysis of an N - p-tolyl formimidoyl ligand, and hence its molecular dimensions are of particular interest. It is bound to ruthenium via a carbon at a distance $[\mathrm{Ru}-\mathrm{C}(11) 1.96(1) \AA]$ which is only a

Table 3
Bond lengths (\AA), with standard deviations in parentheses

$\mathrm{Ru}-\mathrm{P}(1)$	$2.373(3)$	$\mathrm{C}(121)-\mathrm{C}(122)$	$1.39(2)$
$\mathrm{Ru}-\mathrm{P}(2)$	$2.386(3)$	$\mathrm{C}(121)-\mathrm{C}(126)$	$1.40(2)$
$\mathrm{Ru}-\mathrm{O}(2)$	$2.173(8)$	$\mathrm{C}(122)-\mathrm{C}(123)$	$1.37(2)$
$\mathrm{Ru}-\mathrm{O}(3)$	$2.279(8)$	$\mathrm{C}(123)-\mathrm{C}(124)$	$1.37(2)$
$\mathrm{Ru}-\mathrm{C}(1)$	$1.81(1)$	$\mathrm{C}(124)-\mathrm{C}(125)$	$1.36(2)$
$\mathrm{Ru}-\mathrm{C}(11)$	$1.96(1)$	$\mathrm{C}(125)-\mathrm{C}(126)$	$1.42(2)$
$\mathrm{P}(1)-\mathrm{C}(111)$	$1.82(1)$	$\mathrm{C}(131)-\mathrm{C}(132)$	$1.39(2)$
$\mathrm{P}(1)-\mathrm{C}(121)$	$1.83(1)$	$\mathrm{C}(131)-\mathrm{C}(136)$	$1.37(2)$
$\mathrm{P}(1)-\mathrm{C}(131)$	$1.84(1)$	$\mathrm{C}(132)-\mathrm{C}(133)$	$1.40(2)$
$\mathrm{P}(2)-\mathrm{C}(211)$	$1.81(1)$	$\mathrm{C}(133)-\mathrm{C}(134)$	$1.34(2)$
$\mathrm{P}(2)-\mathrm{C}(221)$	$1.84(1)$	$\mathrm{C}(134)-\mathrm{C}(135)$	$1.34(2)$
$\mathrm{P}(2)-\mathrm{C}(231)$	$1.82(1)$	$\mathrm{C}(135)-\mathrm{C}(136)$	$1.39(2)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.14(1)$	$\mathrm{C}(211)-\mathrm{C}(212)$	$1.39(2)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.30(2)$	$\mathrm{C}(211)-\mathrm{C}(216)$	$1.40(2)$
$\mathrm{O}(3)-\mathrm{C}(2)$	$1.29(2)$	$\mathrm{C}(212)-\mathrm{C}(213)$	$1.39(2)$
$\mathrm{N}(11)-\mathrm{C}(11)$	$1.24(1)$	$\mathrm{C}(213)-\mathrm{C}(214)$	$1.38(2)$
$\mathrm{N}(11)-\mathrm{C}(12)$	$1.44(2)$	$\mathrm{C}(214)-\mathrm{C}(215)$	$1.36(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.46(2)$	$\mathrm{C}(215)-\mathrm{C}(216)$	$1.38(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.40(2)$	$\mathrm{C}(221)-\mathrm{C}(222)$	$1.37(2)$
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.36(2)$	$\mathrm{C}(221)-\mathrm{C}(226)$	$1.38(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.36(2)$	$\mathrm{C}(222)-\mathrm{C}(223)$	$1.38(2)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.38(2)$	$\mathrm{C}(223)-\mathrm{C}(224)$	$1.38(2)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.37(2)$	$\mathrm{C}(224)-\mathrm{C}(225)$	$1.34(2)$
$\mathrm{C}(15)-\mathrm{C}(18)$	$1.47(3)$	$\mathrm{C}(225)-\mathrm{C}(226)$	$1.37(2)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.40(2)$	$\mathrm{C}(231)-\mathrm{C}(232)$	$1.39(2)$
$\mathrm{C}(111)-\mathrm{C}(112)$	$1.41(2)$	$\mathrm{C}(231)-\mathrm{C}(236)$	$1.35(2)$
$\mathrm{C}(111)-\mathrm{C}(116)$	$1.39(2)$	$\mathrm{C}(232)-\mathrm{C}(233)$	$1.38(2)$
$\mathrm{C}(112)-\mathrm{C}(113)$	$1.38(2)$	$\mathrm{C}(233)-\mathrm{C}(234)$	$1.35(2)$
$\mathrm{C}(113)-\mathrm{C}(114)$	$1.34(3)$	$\mathrm{C}(234)-\mathrm{C}(235)$	$1.34(2)$
$\mathrm{C}(114)-\mathrm{C}(115)$	$1.36(3)$	$\mathrm{C}(235)-\mathrm{C}(236)$	$1.39(2)$
$\mathrm{C}(115)-\mathrm{C}(116)$	$1.40(2)$		

little shorter than that estimated for $\mathrm{Ru}-\mathrm{C}\left(s p^{2}\right)(2.00 \AA),{ }^{11}$ and which suggests a bond order close to one. It thus appears that in this complex at least, the formimidoyl ligand has little or no π-bonding capacity.

The bond length $\mathrm{C}(11)-\mathrm{N}(11)[1.24(1) \AA]$ is shorter than that expected for a double bond and may indicate a slight increase in bond order. The $\mathrm{Ru}-\mathrm{C}(11)-\mathrm{N}(11)$ angle $\left[135.3(9)^{\circ}\right]$ is considerably greater than the expected value of 120° and probably arises because of the steric interaction between $\mathrm{N}(11)$ and $\mathrm{H}(126)$; the distance between these two atoms is $2.42 \AA$. The $\mathrm{N}(11)-\mathrm{C}(12)$ distance $[1.44(2) \AA]$ and $\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(12)$ angle [119.1(1.0) ${ }^{\circ}$] are as expected for a nitrogen-carbon single bond and trigonal nitrogen atom. The mean bond length within the phenyl rings is $1.38(2) \AA$ which is a normal value; the associated bond angles do not differ significantly from 120°. The bond length $\mathrm{C}(15)-\mathrm{C}(18)$ $[1.47(3) \AA]$ is not significantly different from that expected for a single $\mathrm{C}-\mathrm{C}$ bond. The $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)$ $\left[121(2)^{\circ}\right]$ and $\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)\left[122(2)^{\circ}\right]$ angles are also normal. The plane of best fit through the phenyl ring of the N - p-tolylformimidoyl group shows that this ligand is approximately planar but that it makes a dihedral angle of 65.5° with that of atoms $\mathrm{C}(\mathrm{I}), \mathrm{C}(11), \mathrm{O}(2), \mathrm{O}(3)$. This angle results from a rotation about the bond $\mathrm{N}(11)-$ $\mathrm{C}(12)$ as well as a bend at atom $\mathrm{C}(11)$, and is apparently caused by steric interaction between phenyl rings $\mathrm{C}\left(121^{\prime}\right)-\left(126^{\prime}\right), \mathrm{C}(131)-(136)$ and the N - p-tolylformimidoyl ligand. Figure 3 shows the formimidoyl group sandwiched between these two phenyl rings.
${ }_{11}$ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 3rd edn., 1960.

TABLE 4
Bond angles $\left(^{\circ}\right.$), with standard deviations in parentheses

$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	177.8(1)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{O}(2)$	86.0 (2)
$\mathrm{P}(\mathrm{l})-\mathrm{Ru}-\mathrm{O}(3)$	92.4(2)
$\mathrm{P}(\mathrm{l})-\mathrm{Ru}-\mathrm{C}(1)$	92.4(4)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(11)$	88.7 (3)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{O}(2)$	92.0(2)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{O}(3)$	85.9(2)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{C}(1)$	89.5(4)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{C}(11)$	92.2 (3)
$\mathrm{O}(2)-\mathrm{Ru}-\mathrm{O}(3)$	58.7 (3)
$\mathrm{O}(2)-\mathrm{Ru}-\mathrm{C}(11)$	96.3(4)
$\mathrm{O}(3)-\mathrm{Ru}-\mathrm{C}(1)$	111.5(4)
$\mathrm{C}(1)-\mathrm{Ru}-\mathrm{C}(11)$	93.6(5)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(111)$	$111.8(4)$
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(121)$	116.5(4)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(131)$	$116.9(4)$
Ru-P(2)-C(211)	117.7(4)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(221)$	112.0(4)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(231)$	114.4(4)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	105.3(5)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$	103.0 (5)
$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$	101.8(5)
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	103.7(5)
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(231)$	103.1(5)
$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(231)$	104.5(5)
$\mathrm{Ru}-\mathrm{O}(2)-\mathrm{C}(2)$	95.2(8)
$\mathrm{Ru}-\mathrm{O}(3)-\mathrm{C}(2)$	90.6 (8)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{O}(3)$	$115.4(1.2)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	121.1(1.3)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	123.5(1.3)
$\mathrm{Ru}-\mathrm{C}(1)-\mathrm{O}(1)$	179.6(1.0)
$\mathrm{Ru}-\mathrm{C}(11)-\mathrm{N}(11)$	135.3(9)
$\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(12)$	119.1(1.0)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.0(1.2)
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	122.7(1.2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	118.4(1.3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.7(1.5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	122.0(1.7)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	116.9(1.6)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)$	121.2(1.6)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)$	121.9(1.6)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	122.3(1.5)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	119.6(1.4)
$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(112)$	118.2(1.0)
$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(116)$	123.1(1.0)
$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(122)$	124.0(9)
$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(126)$	116.8(8)
$\mathrm{P}(1)-\mathrm{C}(131)-\mathrm{C}(132)$	$119.2(9)$
$\mathrm{P}(1)-\mathrm{C}(131)-\mathrm{C}(136)$	121.4(9)
$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(212)$	119.6(9)
$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(216)$	121.5(9)
$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(222)$	117.6(9)
$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(226)$	123.0(9)
$\mathrm{P}(2)-\mathrm{C}(231)-\mathrm{C}(232)$	121.6(9)
$\mathrm{P}(2)-\mathrm{C}(231)-\mathrm{C}(236)$	121.3(1.0)
$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{C}(116)$	119(1)
$\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{C}(113)$	120(1)
$\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{C}(114)$	121(2)
$\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{C}(115)$	122(2)
$\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{C}(116)$	120(2)
$\mathrm{C}(111)-\mathrm{C}(116)-\mathrm{C}(115)$	120(1)
$\mathrm{C}(122)-\mathrm{C}(121)-\mathrm{C}(126)$	119(1)
$\mathrm{C}(121)-\mathrm{C}(122)-\mathrm{C}(123)$	121(1)
$\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{C}(124)$	120(1)
$\mathrm{C}(123)-\mathrm{C}(124)-\mathrm{C}(125)$	121(1)
$\mathrm{C}(124)-\mathrm{C}(125)-\mathrm{C}(126)$	120(1)
$\mathrm{C}(121)-\mathrm{C}(126)-\mathrm{C}(125)$	118(1)
$\mathrm{C}(132)-\mathrm{C}(131)-\mathrm{C}(136)$	119(1)
$\mathrm{C}(131)-\mathrm{C}(132)-\mathrm{C}(133)$	119(1)
$\mathrm{C}(132)-\mathrm{C}(133)-\mathrm{C}(134)$	119(1)
$\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(135)$	123(1)
$\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(136)$	119(1)
$\mathrm{C}(131)-\mathrm{C}(136)-\mathrm{C}(135)$	120(1)
$\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{C}(216)$	119(1)
$\mathrm{C}(211)-\mathrm{C}(212)-\mathrm{C}(213)$	120(1)
$\mathrm{C}(212)-\mathrm{C}(213)-\mathrm{C}(214)$	122(1)

Table 4 (Continued)

$\mathrm{C}(213)-\mathrm{C}(214)-\mathrm{C}(215)$	$117(1)$
$\mathrm{C}(214)-\mathrm{C}(215)-\mathrm{C}(216)$	$123(1)$
$\mathrm{C}(211)-\mathrm{C}(216)-\mathrm{C}(215)$	$119(1)$
$\mathrm{C}(222)-\mathrm{C}(221)-\mathrm{C}(226)$	$119(1)$
$\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(223)$	$120(1)$
$\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(224)$	$120(1)$
$\mathrm{C}(223)-\mathrm{C}(244)-\mathrm{C}(225)$	$119(1)$
$\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(226)$	$122(1)$
$\mathrm{C}(221)-\mathrm{C}(266)-\mathrm{C}(225)$	$119(1)$
$\mathrm{C}(232)-\mathrm{C}(231)-\mathrm{C}(236)$	$117(1)$
$\mathrm{C}(231)-\mathrm{C}(232)-\mathrm{C}(233)$	$121(1)$
$\mathrm{C}(232)-\mathrm{C}(233)-\mathrm{C}(234)$	$122(1)$
$\mathrm{C}(233)-\mathrm{C}(234)-\mathrm{C}(235)$	$117(1)$
$\mathrm{C}(2344)-\mathrm{C}(355)-\mathrm{C}(236)$	$124(2)$
$\mathrm{C}(231)-\mathrm{C}(236)-\mathrm{C}(235)$	$120(1)$

The asymmetric bidentate acetate group has ru-thenium-oxygen distances of $2.173(8)$ and $2.279(8) \AA$ whereas the $\mathrm{O}-\mathrm{Ru}-\mathrm{O}$ angle is $58.7(3)^{\circ}$. These values

Figure 3 The packing of the molecules in the unit cell
suggest that the acetate group is loosely held and is comparable with the acetate group in $\left[\mathrm{RuH}(\mathrm{OAc})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ where the corresponding values are $2.256(10), 2.208(10) \AA$, and $57.5(4)^{\circ} .^{12}$ The N - p-tolylformimidoyl ligand is opposite the longer $\mathrm{Ru}-\mathrm{O}$ bond and it appears that this ligand has a greater trans-effect than carbonyl which is opposite the shorter $\mathrm{Ru}-\mathrm{O}$ bond. The two $\mathrm{C}-\mathrm{O}$ distances [1.30(2) and $1.29(2) \AA$] are identical but the $\mathrm{Ru}-\mathrm{O}-\mathrm{C}$ angles [95.2(8) and $90.6(8)^{\circ}$] are not, the difference arising from the asymmetric binding to ruthenium. The $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angle $\left[115.4(1.2)^{\circ}\right]$ differs slightly from the expected trigonal value due to the formation of the four-membered chelate ring. The foregoing values can

[^2]be compared with similar ones in the complex acetato-C-rac-(5,7,7,12,14,14-hexamethyl-1,4,8,11-tetra-azacyclotetradecane)nickel(II) perchlorate where values of $1.25(2)$ and $1.25(2) \AA$ and $88.2(8), 87.8(8)$, and $121.6(1.4)^{\circ}$ were found. ${ }^{13}$ The $\mathrm{C}(2)-\mathrm{C}(3)$ bond length $[1.46(2) \AA]$ is slightly shorter than a normal $\mathrm{C}-\mathrm{C}$ single bond but in view of the common underestimation of standard deviations ${ }^{14}$ it is unlikely that this difference is meaningful. The two $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles $\left[121.1(1.3)\right.$ and $\left.123.5(1.3)^{\circ}\right]$ are normal.

The carbonyl group is bonded linearly with $\mathrm{Ru}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths of $1.81(1)$ and $1.14(1) \AA$; $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ is $180(1)^{\circ}$. These values can be compared with the appropriate distances and angles in $\mathrm{Ru}_{3}(\mathrm{CO})_{12}{ }^{15}$ where $\mathrm{Ru}-\mathrm{C}$ distances range from 1.83(2) to 1.99(2) \AA and the mean C-O distance is $1.14(2) \AA$. In the present complex the carbonyl appears to be a better π-acceptor than in $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$, no doubt since it is only competing with the acetate group for π-electrons.

The mean $\mathrm{Ru}-\mathrm{P}$ bond length $[2.379(9) \AA]$ compares well with previous values. ${ }^{12,16}$ The mean $\mathrm{P}-\mathrm{C}$ bond length is $1.83(\mathrm{l}) \AA$ and mean $\mathrm{Ru}-\mathrm{P}-\mathrm{C}, \mathrm{C}-\mathrm{P}-\mathrm{C}$, and $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angles are 115(3), 104(1), and $121(2)^{\circ}[c f . \mathrm{P}-\mathrm{C} 1.848(5) \AA$ and C-P-C $101.6(1.0)^{\circ}$ in $\left.\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{16}$ The mean C-C bond length is $1.38 \AA$ with an estimated standard deviation of $0.02 \AA$ calculated from a statistical spread of values and no angles within the phenyl rings deviate significantly from 120°. The phenyl rings are approximately planar.

As already mentioned, the geometry of the complex can be described as a distorted octahedron with the bulky triphenylphosphine ligands lying mutually trans and the distortion arising from chelation of the acetate group. The angles $\mathrm{O}(2)-\mathrm{Ru}-\mathrm{O}(3), \mathrm{O}(3)-\mathrm{Ru}-\mathrm{C}(1), \mathrm{C}(1)-\mathrm{Ru}-\mathrm{C}(11)$, and $\mathrm{O}(2)-\mathrm{Ru}^{-\mathrm{C}}(11)$ are $58.7(3), 111.5(4), 93.6(5)$, and $96.3(4)^{\circ}$. There are a number of intermolecular contacts involving the carbonyl oxygen $\mathrm{O}(\mathrm{I})$ (none $<3.20 \AA$) and it appears that the effect of these has been lessened by the $\mathrm{O}(3)-\mathrm{Ru}-\mathrm{C}(1)$ angle increasing from the expected angle of $c a .100^{\circ}$ to $111.5(4)^{\circ}$. The $\mathrm{C}(1)-\mathrm{Ru}-\mathrm{C}(11)$ and $\mathrm{O}(2)-\mathrm{Ru}-\mathrm{C}(11)$ angles have apparently decreased slightly to accommodate this change. The plane of best fit

Table 5
Intermolecular distances $\leqslant 3.40 \AA$ (excluding hydrogen atoms)

	Symmetry position*	Translation	Distance
$\mathrm{O}(1) \cdots \mathrm{C}(133)$	$\left(\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z\right)$	$(0,0,0)$	3.35
$\mathrm{O}(1) \cdots \mathrm{C}(233)$	(x, y, z)	$(\overline{1}, 0,0)$	3.36
$\mathrm{O}(1) \cdots \mathrm{C}(233)$	$(\bar{x}, \bar{y}, \bar{z})$	$(0,1,1)$	3.32
$\mathrm{O}(1) \cdots \mathrm{C}(234)$	$(\bar{x}, \bar{y}, \bar{z})$	$(0,1,1)$	3.26
$\mathrm{C}(3) \cdots \mathrm{C}(3)$	$(\bar{x}, \bar{y}, \bar{z})$	$(1,0,1)$	3.38
$\mathrm{C}(113) \cdots \mathrm{C}(113)$	$(\bar{x}, \bar{y}, \bar{z})$	$(0.0,1)$	3.35
		$*$ Of second atom.	

through atoms $\mathrm{O}(2), \mathrm{O}(3), \mathrm{C}(1)$, and $\mathrm{C}(11)$ shows that the three ligands forming the plane of the octahedron are in fact non-planar with the trans-atoms $\mathrm{O}(2)$ and $\mathrm{C}(1)$
${ }^{14}$ W. C. Hamilton and S. C. Abrahams, Acta Cryst., 1970, A26, 18.
${ }_{16}$ R. Mason and A. I. M. Rae, J. Chem. Soc. (A), 1968, 778.
${ }^{16}$ S. J. La Placa and J. A. Ibers, Inorg. Chem., 1965, 4, 778.
below this plane by 0.05 and $0.04 \AA$ respectively and $\mathrm{O}(3)$ and C(11) above it by 0.05 and $0.04 \AA$ respectively.

The packing of the molecules is illustrated in Figure 3. Intermolecular distances $\leqslant 3.40 \AA$ (except for hydrogen contacts which are $\leqslant 2.90 \AA$) are listed in Tables 5 and 6

Table 6
Intermolecular distances involving hydrogen atoms $\leqslant 2.90 \AA$

Symmetry position	Translation	Distance
$\left(\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z\right)$	$(0,0,0)$	2.50
(x, y, z)	$(\overline{1}, 0,0)$	2.88
$(\bar{x}, \bar{y}, \bar{z})$	$(0,1,1)$	2.67
$(\bar{x}, \bar{y}, \bar{z})$	$(0,1,1)$	2.56
$(\bar{x}, \bar{y}, \bar{z})$	$(0,0,1)$	2.67
$(\bar{x}, \bar{y}, \bar{z})$	$(1,0,1)$	2.85
$\left(\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z\right)$	$(1,0,0)$	2.84
(x, y, z)	$(\overline{1}, 0,0)$	2.88

* Of second atom.
and non-bonded intramolecular distances (excluding the $\mathrm{C}-\mathrm{C}$ distances within a phenyl ring) $\leqslant 3.75 \AA$ are listed in Table 7. The more important intermolecular contacts involve the oxygen of the carbonyl group and carbons
of the phenyl rings. Two of the $\mathrm{O} \cdots \mathrm{H}$ distances are less than the sum of the van der Waals radii $(2.6 \AA)^{17}$ but it is unlikely that hydrogen bonding occurs since the

Table 7
Some non-bonded intramolecular distances (\AA)

$\mathrm{P}(1) \cdots \mathrm{O}(2)$	3.10	$\mathrm{P}(2) \cdots \mathrm{H}(11)$	3.33
$\mathrm{P}(1) \cdots \mathrm{O}(3)$	3.36	$\mathrm{O}(1) \cdots \mathrm{N}(11)$	3.72
$\mathrm{P}(1) \cdots \mathrm{C}(1)$	3.04	$\mathrm{O}(2) \cdots \mathrm{O}(3)$	2.18
$\mathrm{P}(1) \cdots \mathrm{C}(1)$	3.04	$\mathrm{O}(2) \cdots \mathrm{C}(1)$	3.08
$\mathrm{P}(1) \cdots \mathrm{H}(11)$	3.63	$\mathrm{O}(2) \cdots \mathrm{H}(11)$	2.94
$\mathrm{P}(2) \cdots \mathrm{O}(2)$	3.28	$\mathrm{O}(3) \cdots \mathrm{C}(1)$	3.39
$\mathrm{P}(2) \cdots \mathrm{O}(3)$	3.18	$\mathrm{~N}(11) \cdots \mathrm{C}(1)$	3.13
$\mathrm{P}(2) \cdots \mathrm{C}(1)$	2.98	$\mathrm{C}(1) \cdots \mathrm{C}(11)$	2.75
$\mathrm{P}(2) \cdots \mathrm{C}(11)$	3.15		

$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angles are less than 140° and the $\mathrm{C} \cdots \mathrm{O}$ distances are too long. These close contacts appear to be the result of the crystal packing.

We thank Dr. W. R. Roper for supplying the crystals.
[4/1787 Received, 29th August, 1974]
17 W. C. Hamilton and J. A. Ibers, 'Hydrogen Bonding in Solids,' Benjamin, New York, 1968.

[^0]: ${ }^{6}$ P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 1967, 6, 197.

 7 W. R. Busing and H. A. Levy, Acta Cryst., 1957, 10, 180.
 ${ }^{8}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 g ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

[^1]: * See Notice to Authors No. 7, in J.C.S. Dalton, 1974, Index issue.

 10 D. T. Cromer, Acta Cryst., 1965, 18, 17.

[^2]: 12 A. C. Skapski and F. A. Stephens, Chem. Comm., 1969, 1008. ${ }^{13}$ P. O. Whimp, M. F. Bailey, and N. F. Curtis, J. Chem. Soc. (A), 1970, 1956.

